Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 67(18)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961298

RESUMO

Objective. The accuracy of radiotherapy for patients with locally advanced cancer is compromised by independent motion of multiple targets. To date, MLC tracking approaches have used 2D geometric optimisation where the MLC aperture shape is simply translated to correspond to the target's motion, which results in sub-optimal delivered dose. To address this limitation, a dose-optimised multi-target MLC tracking method was developed and evaluated through simulated locally advanced prostate cancer treatments.Approach. A dose-optimised multi-target tracking algorithm that adapts the MLC aperture to minimise 3D dosimetric error was developed for moving prostate and static lymph node targets. A fast dose calculation algorithm accumulated the planned dose to the prostate and lymph node volumes during treatment in real time, and the MLC apertures were recalculated to minimise the difference between the delivered and planned dose with the included motion. Dose-optimised tracking was evaluated by simulating five locally advanced prostate plans and three prostate motion traces with a relative interfraction displacement. The same simulations were performed using geometric-optimised tracking and no tracking. The dose-optimised, geometric-optimised, and no tracking results were compared with the planned doses using a 2%/2 mmγcriterion.Main results. The mean dosimetric error was lowest for dose-optimised MLC tracking, withγ-failure rates of 12% ± 8.5% for the prostate and 2.2% ± 3.2% for the nodes. Theγ-failure rates for geometric-optimised MLC tracking were 23% ± 12% for the prostate and 3.6% ± 2.5% for the nodes. When no tracking was used, theγ-failure rates were 37% ± 28% for the prostate and 24% ± 3.2% for the nodes.Significance. This study developed a dose-optimised multi-target MLC tracking method that minimises the difference between the planned and delivered doses in the presence of intrafraction motion. When applied to locally advanced prostate cancer, dose-optimised tracking showed smaller errors than geometric-optimised tracking and no tracking for both the prostate and nodes.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Movimento (Física) , Próstata , Neoplasias da Próstata/radioterapia , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Radiother Oncol ; 160: 212-220, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971194

RESUMO

PURPOSE: Locally advanced and oligometastatic cancer patients require radiotherapy treatment to multiple independently moving targets. There is no existing commercial solution that can simultaneously track and treat multiple targets. This study experimentally implemented and evaluated a real-time multi-target tracking system for locally advanced prostate cancer. METHODS: Real-time multi-target MLC tracking was integrated with 3D x-ray image guidance on a standard linac. Three locally advanced prostate cancer treatment plans were delivered to a static lymph node phantom and dynamic prostate phantom that reproduced three prostate trajectories. Treatments were delivered using multi-target MLC tracking, single-target MLC tracking, and no tracking. Doses were measured using Gafchromic film placed in the dynamic and static phantoms. Dosimetric error was quantified by the 2%/2 mm gamma failure rate. Geometric error was evaluated as the misalignment between target and aperture positions. The multi-target tracking system latency was measured. RESULTS: The mean (range) gamma failure rates for the prostate and lymph nodes, were 18.6% (5.2%, 28.5%) and 7.5% (1.1%, 13.7%) with multi-target tracking, 7.9% (0.7%, 15.4%) and 37.8% (18.0%, 57.9%) with single-target tracking, and 38.1% (0.6%, 75.3%) and 37.2% (29%, 45.3%) without tracking. Multi-target tracking had the lowest geometric error with means and standard deviations within 0.2 ± 1.5 for the prostate and 0.0 ± 0.3 mm for the lymph nodes. The latency was 730 ± 20 ms. CONCLUSION: This study presented the first experimental implementation of multi-target tracking to independently track prostate and lymph node displacement during VMAT. Multi-target tracking reduced dosimetric and geometric errors compared to single-target tracking and no tracking.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Aceleradores de Partículas , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Med Phys ; 48(1): 114-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33124079

RESUMO

PURPOSE: For patients with locally advanced cancer, multiple targets are treated simultaneously with radiotherapy. Differential motion between targets can compromise the treatment accuracy, yet there are currently no methods able to adapt to independent target motion. This study developed a multileaf collimator (MLC) tracking algorithm for differential motion adaptation and evaluated it in simulated treatments of locally advanced prostate cancer. METHODS: A multi-target MLC tracking algorithm was developed that consisted of three steps: (a) dividing the MLC aperture into two possibly overlapping sections assigned to the prostate and lymph nodes, (b) calculating the ideally shaped MLC aperture as a union of the individually translated sections, and (c) fitting the MLC positions to the ideal aperture shape within the physical constraints of the MLC leaves. The multi-target tracking method was evaluated and compared with two existing motion management methods: single-target tracking and no tracking. Treatment simulations of six locally advanced prostate cancer patients with three prostate motion traces were performed for all three motion adaptation methods. The geometric error for each motion adaptation method was calculated using the area of overexposure and underexposure of each field. The dosimetric error was estimated by calculating the dose delivered to the prostate, lymph nodes, bladder, rectum, and small bowel using a motion-encoded dose reconstruction method. RESULTS: Multi-target MLC tracking showed an average improvement in geometric error of 84% compared to single-target tracking, and 83% compared to no tracking. Multi-target tracking maintained dose coverage to the prostate clinical target volume (CTV) D98% and planning target volume (PTV) D95% to within 4.8% and 3.9% of the planned values, compared to 1.4% and 0.7% with single-target tracking, and 20.4% and 31.8% with no tracking. With multi-target tracking, the node CTV D95%, PTV D90%, and gross tumor volume (GTV) D95% were within 0.3%, 0.6%, and 0.3% of the planned values, compared to 9.1%, 11.2%, and 21.1% for single-target tracking, and 0.8%, 2.0%, and 3.2% with no tracking. The small bowel V57% was maintained within 0.2% to the plan using multi-target tracking, compared to 8% and 3.5% for single-target tracking and no tracking, respectively. Meanwhile, the bladder and rectum V50% increased by up to 13.6% and 5.2%, respectively, using multi-target tracking, compared to 2.7% and 1.9% for single-target tracking, and 11.2% and 11.5% for no tracking. CONCLUSIONS: A multi-target tracking algorithm was developed and tracked the prostate and lymph nodes independently during simulated treatments. As the algorithm optimizes for target coverage, tracking both targets simultaneously may increase the dose delivered to the organs at risk.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Movimento (Física) , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Med Phys ; 47(12): 6440-6449, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058211

RESUMO

PURPOSE: High quality radiotherapy is challenging in cases where multiple targets with independent motion are simultaneously treated. A real-time tumor tracking system that can simultaneously account for the motion of two targets was developed and characterized. METHODS: The multitarget tracking system was implemented on a magnetic resonance imaging (MRI)-linac and utilized multi-leaf collimator (MLC) tracking to adapt the radiation beam to phantom targets reproducing motion with prostate and lung motion traces. Multitarget tracking consisted of three stages: (a) pretreatment aperture segmentation where the treatment aperture was divided into segments corresponding to each target, (b) MR imaging where the positions of the two targets were localized, and (c) MLC tracking where an updated treatment aperture was calculated. Electronic portal images (EPID) acquired during irradiation were analyzed to characterize geometric uncertainty and tracking latency. RESULTS: Multitarget MLC tracking effectively accounted for the motion of both targets during treatment. The root-mean-square error between the centers of the targets and the centers of the corresponding MLC leaves were reduced from 5.5 mm without tracking to 2.7 mm with tracking for lung motion traces and reduced from 4.2 to 1.4 mm for prostate motion traces. The end-to-end latency of tracking was measured to be 328 ± 44 ms. CONCLUSIONS: We have demonstrated the first experimental implementation of MLC tracking for multiple targets having independent motion. This technology takes advantage of the imaging capabilities of MRI-linacs and would allow treatment margins to be reduced in cases where multiple targets are simultaneously treated.


Assuntos
Aceleradores de Partículas , Radioterapia de Intensidade Modulada , Imageamento por Ressonância Magnética , Masculino , Movimento (Física) , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador
5.
Radiother Oncol ; 151: 234-241, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828839

RESUMO

PURPOSE: Stereotactic Ablative Radiotherapy (SABR) has recently emerged as a favourable treatment option for prostate cancer patients. With higher doses delivered over fewer fractions, motion adaptation is a requirement for accurate delivery of SABR. This study compared the efficacy of multileaf collimator (MLC) tracking vs. gating as a real-time motion adaptation strategy for prostate SABR patients enrolled in a clinical trial. METHODS: Forty-four prostate cancer patients treated over five fractions in the TROG 15.01 SPARK trial were analysed in this study. Forty-nine fractions were treated using MLC tracking and 166 fractions were treated using beam gating and couch shifts. A time-resolved motion-encoded dose reconstruction method was used to evaluate the dose delivered using each motion adaptation strategy and compared to an estimation of what would have been delivered with no motion adaptation strategy implemented. RESULTS: MLC tracking and gating both delivered doses closer to the plan compared to when no motion adaptation strategy was used. Differences between MLC tracking and gating were small with differences in the mean discrepancy from the plan of -0.3% (CTV D98%), 1.4% (CTV D2%), 0.4% (PTV D95%), 0.2% (rectum V30Gy) and 0.0% (bladder V30Gy). On average, 0.5 couch shifts were required per gated fractions with a mean interruption duration of 1.8 ± 2.6 min per fraction treated using gating. CONCLUSION: Both MLC tracking and gating were effective strategies at improving the accuracy of the dose delivered to the target and organs at risk. While dosimetric performance was comparable, gating resulted in interruptions to treatment. CLINICAL TRIAL REGISTRATION NUMBER: NCT02397317.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Masculino , Movimento (Física) , Próstata , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 46(11): 4725-4737, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31446633

RESUMO

PURPOSE: Kilovoltage intrafraction monitoring (KIM) allows for real-time image guidance for tracking tumor motion in six-degrees-of-freedom (6DoF) on a standard linear accelerator. This study assessed the geometric accuracy and precision of KIM used to guide patient treatments in the TROG 15.01 multi-institutional Stereotactic Prostate Ablative Radiotherapy with KIM trial and investigated factors affecting accuracy and precision. METHODS: Fractions from 44 patients with prostate cancer treated using KIM-guided SBRT were analyzed across four institutions, on two different linear accelerator models and two different beam models (6 MV and 10 MV FFF). The geometric accuracy and precision of KIM was assessed from over 33 000 images (translation) and over 9000 images (rotation) by comparing the real-time measured motion to retrospective kV/MV triangulation. Factors potentially affecting accuracy, including contrast-to-noise ratio (CNR) of kV images and incorrect marker segmentation, were also investigated. RESULTS: The geometric accuracy and precision did not depend on treatment institution, beam model or motion magnitude, but was correlated with gantry angle. The centroid geometric accuracy and precision of the KIM system for SABR prostate treatments was 0.0 ± 0.5, 0.0 ± 0.4 and 0.1 ± 0.3 mm for translation, and -0.1 ± 0.6°, -0.1 ± 1.4° and -0.1 ± 1.0° for rotation in the AP, LR and SI directions respectively. Centroid geometric error exceeded 2 mm for 0.05% of this dataset. No significant relationship was found between large geometric error and CNR or marker segmentation correlation. CONCLUSIONS: This study demonstrated the ability of KIM to locate the prostate with accuracy below other uncertainties in radiotherapy treatments, and the feasibility for KIM to be implemented across multiple institutions.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Masculino , Aceleradores de Partículas , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...